氣動皮升操作泵
儀器概況
WPI 公司的氣動皮升泵通過使用調節的氣壓來固定細胞并注射液體,是斑馬魚顯微注射及斑馬魚卵細胞基因感染實驗中經典的注射系統。具有使用方便, 注射程序簡單,重復性極佳的優點,注射的體積范圍從pL到nL不等。正壓和負壓由單獨的端口提供,正壓主要用于高壓噴射,負壓用于吸附支持細胞及毛細管尖端的充液,第二個壓力端口在每次注射脈沖之間讓毛細管尖端保持低的正性維持壓,以阻止液體通過毛細管虹吸作用或擴散的方式回吸。
定時作用、噴射壓力、維持壓和吸附作用都是獨立地通過儀器前板的控制旋鈕和顯示表來調節,注射壓通過前板的20圈調節器控制,內置定時電路可以精確控制當注射壓力應用到輸出端口的時間參數。注射壓力間隔可以從前板手動觸發,也可以通過腳踏開關或計算機控制的TTL脈沖觸發,一個5V的輸出為計算機或其它監測設備提供一個邏輯電平脈沖。
SYS-PV830可以通過前板的各自調節器提供噴射壓、維持壓和真空。噴射壓用來提供高壓脈沖注射液體、維持壓主要用來防止毛細管虹吸導致液體尖端回吸。真空也通過前板以同樣的方式調節。真空端口可以在前板用棒狀開關從真空切換到大氣環境、真空可以引導到噴射端口。
產品特征
● 操作簡便
手動控制:輕按前面板啟動鍵開始或停止
腳踏開關:腳踏開關靈活控制開始或停止
外部輸入:通過計算機編程控制時間參數或TTL信號啟動
● 雙重模式
外部啟動:通過計算機控制啟動時間
內部啟動:通過儀器內部晶體振蕩器控制啟動時間
● 計量準確
時間參數:具有100ms和10s兩個時間檔,能夠精確調節到0.2ms
體積準確:通過調節注射時間、注射壓和毛細管尖端大小均可確保注射體積一致
● 可重復性
通過固定壓力、時間和尖端口徑,可確保每次注射體積一致,做到可重復性
產品用途
用于斑馬魚研究:
● 用于斑馬魚卵細胞DNA等遺傳物質注射;
● 用于斑馬魚幼魚體內藥物、染料的微量注射; 用于斑馬魚幼魚體內腫瘤細胞及其它干細胞 的種植;
用于昆蟲研究:
● 用于果繩卵細胞DNA等遺傳物質注射;
● 用于棉鈴蟲、褐飛虱等蠶蛹體內藥物及染料等微量注射;
用于嗅覺或味覺研究:
● 用過PUFF方式對神經元或腦內核團給刺激物或氣味;
用于物質的轉移:
● 用于細胞核或細胞器移植; 用于微小粒子的移??;
PV800系列氣動皮升操作泵參考文獻
[1] Operant conditioning paradigm for juxtacellular recordings in functionally identified cortical neurons during motor execution in head-fixed rats
Journal of Neuroscience Methods 2020, 329, 108454 https://doi.org/10.1016/j.jneumeth.2019.108454
[2] Characterization of immune response against Mycobacterium marinum infection in the main hematopoietic organ of adult zebrafish (Danio rerio)
Developmental & Comparative Immunology 2020, 103, 103523 https://doi.org/10.1016/j.dci.2019.103523
[3] Inhibition of amyloid beta toxicity in zebrafish with a chaperone-gold nanoparticle dual strategy Nature Communications 2019, 10, 3780
https://doi.org/10.1038/s41467-019-11762-0
[4] High-resolution 3D imaging and analysis of axon regeneration in unsectioned spinal cord with or without tissue clearing
Nature Protocols 2019, 14: 1235–1260 https://doi.org/10.1038/s41596-019-0140-z
[5] Dimethyl Fumarate Reduces Microglia Functional Response to Tissue Damage and Favors Brain Iron Homeostasis Neuroscience 2019, November, in press.
https://doi.org/10.1016/j.neuroscience.2019.10.041
[6] Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish Protein & Cell 2019, 10(5):347–364
https://doi.org/10.1007/s13238-018-0603-y
[7] Location and Plasticity of the Sodium Spike Initiation Zone in Nociceptive Terminals In Vivo Neuron 2019, 102(4):801-812.e5
https://doi.org/10.1016/j.neuron.2019.03.005
[8] In Vivo Force Application Reveals a Fast Tissue Softening and External Friction Increase during Early Embryogenesis Current Biology 2019, 29(9):1564-1571.e6
https://doi.org/10.1016/j.cub.2019.04.010
[9] Active membrane conductances and morphology of a collision detection neuron broaden its impedance profile and improve discrimination of input synchrony
Journal of Neurophysiology 2019, 122(2):691-706 https://doi.org/10.1152/jn.00048.2019
[10] Zebrafish as a predictive screening model to assess macrophage clearance of liposomes in vivo Nanomedicine: Nanotechnology, Biology and Medicine 2019, 17:82-93 https://doi.org/10.1016/j.nano.2018.11.017
[11] Wnts control membrane potential in mammalian cancer cells The Journal of Physiology 2019, 597(24):5899-5914 https://doi.org/10.1113/JP278661
[12] Orexin facilitates GABAergic IPSCs via postsynaptic OX1 receptors coupling to the intracellular PKC signalling cascade in the rat cerebral cortex
Neuropharmacology 2019, 149:97-112 https://doi.org/10.1016/j.neuropharm.2019.02.012
[13] Central nucleus of the amygdala is involved in induction of yawning response in rats Behavioural Brain Research 2019, 371, 111974 https://doi.org/10.1016/j.bbr.2019.111974
[14] Oxytocin Receptors Are Expressed by Glutamatergic Prefrontal Cortical Neurons That Selectively Modulate Social Recognition
Journal of Neuroscience 2019, 39 (17):3249-3263; https://doi.org/10.1523/JNEUROSCI.2944-18.2019
[15] Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting poly
-peptide
eLife. 2019; 8: e42276.
https://doi.org/10.7554/eLife.42276
[16] Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential Journal of Cell Science 2019, 132:jcs231563
https://doi.org/10.1242/jcs.231563
[17] Intelectin 3 is dispensable for resistance against a mycobacterial infection in zebrafish (Danio rerio)
Scientific Reports 2019, 9, 995 https://doi.org/10.1038/s41598-018-37678-1
[18] The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning
Nature Neuroscience 2018, 21:50-62
https://doi.org/10.1038/s41593-017-0030-z
[19] Application and optimization of CRISPR–Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum)
Nature Protocols 2018, 13: 2908–2943 https://doi.org/10.1038/s41596-018-0071-0
[20] Engaging and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus Nature Communications 2017, 8, 15413
https://doi.org/10.1038/ncomms15413
[21] Origins of Cell-Type-Specific Olfactory Processing in the Drosophila Mushroom Body Circuit Neuron. 2017, 95 : 357–367
http://dx.doi.org/10.1016/j.neuron.2017.06.039
[22] A Population of Projection Neurons that Inhibits the Lateral Horn but Excites the Antennal Lobe through Chemical Synapses in Drosophila
Front Neural Circuits. 2017; 11: 30. https://doi.org/10.3389/fncir.2017.00030
[23] Cell-Specific PKM Isoforms Contribute to the Maintenance of Different Forms of Persistent Long-Term Synaptic Plasticity
Journal of Neuroscience 2017, 37 (10) 2746-2763; https://doi.org/10.1523/JNEUROSCI.2805-16.2017
[24] Nicotinic activity depresses synaptic potentiation in layer V pyramidal neurons of mouse insular cortex Neuroscience 2017, 358 : 13-27
https://doi.org/10.1016/j.neuroscience.2017.06.031
[25] D-serine released by astrocytes in brainstem regulates breathing response to CO2 levels Nature Communications 2017, 8, 838
https://doi.org/10.1038/s41467-017-00960-3
[26] A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish Nature Protocols 2016, 11, 2357–2375
https://doi.org/10.1038/nprot.2016.141
[27] Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling Cell 2015, 163(7):1730-1741 https://doi.org/10.1016/j.cell.2015.11.023