氣體信號分子和生物自由基檢測儀
儀器概況
TBR4100氣體信號分子和生物自由基檢測儀是一款四通道高通量氣體信號分子和生物自由基檢測設備,可檢測的指標包括一氧化氮(NO)、一氧化碳(CO)、硫化氫(H2S)、葡萄糖(Glu)、氧氣(O2)以及過氧化氫(HPO)。
由于具有性能完全相同的電氣隔離的四通道構造,可以高通量地同時檢測四個樣本或同一個樣本中的四個不同指標;柔性碳纖維微型電極的開發,尖端大小僅有100微米(一氧化氮甚至開發出用于細胞內檢測的 100納米尖端的電極),可以在沒有大的創傷情況下將電極直接插入到動物和植物體內,如麻醉動物體內或離體動物組織器官樣本、植物葉片、根莖中進行實時在體檢測,是模式動物和模式植物研究以及離體組織器官研究氧化應激及ROS檢測的最佳工具,也是動物和植物體內信號分子和生物自由基指標如一氧化氮、硫化氫或過氧化氫變化動力學的最佳分析工具。
儀器特征
● 樣本檢測多通道:由于具有四個功能完全相同的電氣隔離通道,可以 同時進行四個樣本的檢測,也可以用于單個樣本的四個不同指標檢測; 多種電極可選:不同檢測指標的電極如一氧化氮(NO)、一氧化碳(CO)、硫化氫(H2S)、氧氣(O2)、過氧化氫(HPO)和葡萄糖電極可選;
● 組織電極和溶液電極可選:由于柔性碳纖維電極的開發,使一氧化氮、硫化氫、過氧化氫電極的尖端更小,組織電極最小可達30微米,因此對整體動物和離體組織的創傷更小,應激更小,可用于插入動物和植物的組織內進行實時在體測量,也可以在動物離體組織器官或植物葉片、根莖中進行動力學觀察; 2毫米溶液電極可用于溶液包括血清、尿液、唾液樣本、組織及細胞勻漿中進行多種信號分子和自由基檢測;
● 空間分辨率高:由于微電極通常是用尖端去檢測樣本環境中的物質含量,也就意味著尖端越小對空間越小的樣本中化學梯度的變化同樣可以測量,常常用于組織不同深度信號分子含量的測量,也用于非常小范圍內信號分子和自由基的測量如眼睛前房,腦室等;
● 靈敏度高:由于采用電化學原理,對原子間氧化還原極小的電流皮安都可以記錄,因此即使在體內幾個納摩爾信號分子的變化都能夠清晰地記錄;
● 反應速度快:微電極尖端越小,反應速度越快,化合物越容易擴散到電極尖端內部,一氧化氮、硫化氫和過氧化氫的反應時間小于5秒;氧氣和一氧化碳反應時間小于10秒;
● 檢測范圍廣:檢測的分子中最低限可達納摩爾級,最高限可達毫摩爾級,因此可用于模式動物的生理狀態或病理狀態的信號分子和生物自由基物質變化的檢測;
主要用途
● 用于動物缺血再灌注損傷研究:心臟缺血再灌注, 腦缺血再灌注;
● 高血壓機制及抗高血壓藥物作用機制研究;
● 糖尿病外周血管功能紊亂研究;
● 腫瘤生長代謝研究;
● 一氧化氮和硫化氫釋放的體內納米材料研究;
● 模式動物的氧化應激研究;
● 阿爾茲海默癥的發病機制及治療機制研究;
● 用于過敏性結腸炎的發病機制及治療機制研究;
● 用于炎性疾病的自由基對模式動物影響的研究;
● 用于腫瘤組織、腦組織、心肌細胞、肌肉組織中線粒體氧化應激研究;
● 植物生理信號通路研究:
● 植物光合作用研究;
● 植物氧化應激研究;
● 氣候因素如低氧、澇漬、干旱等植物脅迫研究;
● 生物因素如病蟲害對植物脅迫研究:
● 水果的儲存及保鮮研究;
● 植物種子萌發及根系發育研究;
● 缺血心肌細胞或衰竭心肌細胞線粒體呼吸代謝和氧化應激研究;
● 缺血腦組織細胞線粒體呼吸代謝和氧化應激研究;
● 缺血腎組織細胞線粒體呼吸代謝和氧化應激研究;
● 老年癡呆動物模型腦細胞線粒體呼吸代謝和氧化應激研究;
● 帕金森氏綜合征等中樞神經疾病與線粒體功能紊亂研究;
● 腫瘤細胞線粒體呼吸代謝和氧化應激研究;
● 肝細胞線粒體代謝和氧化應激研究;
● 用于植物提取物對動物肝臟腎臟細胞線粒體呼吸代謝的研究;
● 用于模式植物細胞線粒體研究;
參考文獻:用于模式動物研究
[1] The Small Protein CydX Is Required for Cytochrome bd Quinol Oxidase Stability and Function in Salmonella enterica Serovar Typhimurium: a Phenotypic Study
J Bacteriol 2020, 202(2):e00348-19.
https://doi.org/10.1128/JB.00348-19
[2] Acceleration of the autoxidation of nitric oxide by proteins Nitric Oxide 2019, 85:28–34 https://doi.org/10.1016/j.niox.2019.01.014
[3] Catalase prevents myeloperoxidase self-destruction in response to oxidative stress Journal of Inorganic Biochemistry 2019, 197:110706 https://doi.org/10.1016/j.jinorgbio.2019.110706
[4] Cleistanthus collinus poisoning a?ects mitochondrial respiration and induces oxidative stress in the rat kidney Toxicology Mechanisms and Methods 2019, 29:8, 561-568 https://doi.org/10.1080/15376516.2019.1624905
[5] Encapsulation of tDodSNO generates a photoactivated nitric oxide releasing nanoparticle for localized control of vasodilation and vascular hyperpermeability
Free Radical Biology and Medicine 2019, 130:297-305 https://doi.org/10.1016/j.freeradbiomed.2018.10.433
[6] Angiotensin II downregulates vascular endothelial cell hydrogen sul?de production by enhancing cystathionine γ-lyase degradation through ROS-activated ubiquitination pathway
Biochemical and Biophysical Research Communications 2019, 514(3):907-912
https://doi.org/10.1016/j.bbrc.2019.05.021
[7] Glutathione Responsive β-Cyclodextrin Conjugated S-Nitrothiols as a Carrier for Intracellular Delivery of Nitric Oxide Bioconjugate Chem. 2019, 30, 3, 583-591
https://doi.org/10.1021/acs.bioconjchem.8b00735
[8] Endogenous hydrogen sul?de sulfhydrates IKKβ at cysteine 179 to control pulmonary artery endothelial cell in?ammation Clin Sci (Lond) 2019, 133(20): 2045-2059.
https://doi.org/10.1042/CS20190514
[9] The Increased Endogenous Sulfur Dioxide Acts as a Compensatory Mechanism for the Downregulated Endogenous Hydrogen Sul?de Pathway in the Endothelial Cell In?ammation
Front Immunol. 2018, 9:882 https://doi.org/10.3389/?mmu.2018.00882
[10] Metabolism of hydrogen sul?de (H2S) and Production of Reactive Sulfur Species (RSS) by superoxide dismutase Redox Biology 2018, 15:74–85
https://doi.org/10.1016/j.redox.2017.11.009
[11] Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia Free Radical Biology and Medicine 2018, 126:322-333
https://doi.org/10.1016/j.freeradbiomed.2018.08.025
[12] Exogenous Hydrogen Sul?de Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner
Oxid Med Cell Longev. 2018, 2018:9396089. https://doi.org/10.1155/2018/9396089
[13] PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial ?ssion in CA1 neurons Cell Death & Disease 2018, 9:869
https://doi.org/10.1038/s41419-018-0910-5
[14] Carbonic anhydrase II does not exhibit Nitrite reductase or Nitrous Anhydrase Activity Free Radical Biology and Medicine 2018, 117:1-5 https://doi.org/10.1016/j.freeradbiomed.2018.01.015
[15] Hydrogen sul?de pretreatment improves mitochondrial function in myocardial hypertrophyvia a SIRT3-dependent manner. Br J Pharmacol. 2018;175(8):1126-1145.
https://doi.org/10.1111/bph.13861
[16] N-Salicyloyltryptamine, an N-BenzoyltryptamineAnalogue, Induces Vasorelaxation through Activation of the NO/sGC Pathway and Reduction of Calcium In?ux
Molecules 2018, 23(2), 253; https://doi.org/10.3390/molecules23020253
[17] NO production and potassium channels activation induced by Crotalus durissus cascavella underlie mesenteric artery relaxation Toxicon 2017, 133:10-17
https://doi.org/10.1016/j.toxicon.2017.04.010
[18] Catalase as a sul?de-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS)
Redox Biology 2017, 12:325-339 https://doi.org/10.1016/j.redox.2017.02.021
[19] H2S inhibits pulmonary arterial endothelial cell in?ammation in rats with monocrotaline-induced pulmonary hypertension Laboratory Investigation 2017, 97:268–278
https://doi.org/10.1038/labinvest.2016.129
[20] Hydrogen Sul?de Inhibits High-Salt Diet-Induced Myocardial Oxidative Stress and Myocardial Hypertrophy in Dahl Rats Front. Pharmacol. 2017, 8:128
https://doi.org/10.3389/fphar.2017.00128
[21] SIRT3 Mediates the Antioxidant E?ect of Hydrogen Sul?de in Endothelial Cells Antioxid Redox Signal. 2016;24(6):329-43. https://doi.org/10.1089/ars.2015.6331
[22] Hydrogen Sul?de Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats Oxidative Medicine and Cellular Longevity 2016, 2016:2807490, 15 pages https://doi.org/10.1155/2016/2807490
[23] Hydrogen Sul?de Regulates Krüppel‐Like Factor 5 Transcription Activity via Speci?city Protein 1 S‐Sulfhydration at Cys664 to Prevent Myocardial Hypertrophy
J Am Heart Assoc. 2016;5(9). https://doi.org/10.1161/JAHA.116.004160
[24] Elevated Inducible Nitric Oxide Levels and Decreased Hydrogen Sul?de Levels Can Predict the Risk of Coronary Artery Ectasia in Kawasaki Disease
Pediatric Cardiology 2016, 37(2):322–329 https://doi.org/10.1007/s00246-015-1280-8
[25] Down-regulated CBS/H2S pathway is involved in high-salt-induced hypertension in Dahl rats Nitric Oxide 2015, 46:192-203
https://doi.org/10.1016/j.niox.2015.01.004
[26] Hydrogen sul?de upregulates KATP channel expression in vascular smooth muscle cells of spontaneously hypertensive rats Journal of Molecular Medicine 2015, 93(4):439–455
https://doi.org/10.1007/s00109-014-1227-1
[27] Downregulation of Endogenous Hydrogen Sul?de Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt
Oxidative Medicine and Cellular Longevity 2015, 2015:754670, 11 pages https://doi.org/10.1155/2015/754670
[28] Mechanism of the Vasodilator E?ect of Mono-oxygenated Xanthones: A Structure-Activity Relationship Study Planta Med 2013; 79(16): 1495-1500
https://DOI.org/10.1055/s-0033-1350803
[29] Di?erential sensitivity to LPS-induced myocardial dysfunction in the isolated Brown Norway and Dahl S rat hearts: roles of mit- ochondrial function, NFκB activation and TNF-α production
Shock. 2012; 37(3): 325–332.
https://doi.org/10.1097/SHK.0b013e31823f146f
[30] Direct, real-time measurement of shear stress-induced nitric oxide produced from endothelial cells in vitro Nitric Oxide 2010, 23(4):335-342
https://doi.org/10.1016/j.niox.2010.08.003
參考文獻:用于模式植物研究
[1 ] Does oxidative stress determine the thennal limits of the regeneration niche ofVriesea friburgensis and Alcantarea imperial is (Bromeliaceae) seedlings?
Journal of Thermal Biology 2019,80:150-157 https://doi.org/10.1016, jtherbio.2019.02.003
[2] Light regulates hydrogen sulfide signalling during skoto- and photo-morphogenesis in foxtail millet Functional Plant Biology 2019,46(10):916-924
https://doi.org/10.l07l/FPI9079
[3] The role ofH2S in low temperature-induced cucurbitacin C increases in cucumber.
Plant Mol BioL 2019,99(6):535-544.
https://doi.org/10.1007/s 11103-019-00834-w
[4] Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under fill I sun in the nursery Scientific Reports 2019,9:17371
https://doi.org/10.1038/s41598-019-54030-3
[5] Encapsulation of S-nitrosoglutathione into chitosan nanoparticles improves drought tolerance of sugarcane plants Nitric Oxide 2019,84:38-44
https://doi.oig/10.1016/j.niox.2019.01.004
[6] Enhanced nitric oxide synthesis through nitrate supply improves drought tolerance of sugarcane plants bioRxiv preprint first posted online Nov. 30,2019
https://doi.oig/10.1101/860544
[7] Regulation of Hydrogen Sulfide Metabolism by Nitric Oxide Inhibitors and the Quality of Peaches during Cold Storage Antioxidants 2019,8:401-417
https://doi.org/10.3390/antiox8090401
[8] Hydrogen Sulfide Regulates Energy Production to Delay Leaf Senescence Induced by Drought Stress in Arabidopsis Front. Plant Sci. 2018,01722
https://doi.oig/ 10.3389/fpls.2018.01722
[9] Diversity of hydrogen sulfide concentration in plant: a little spark to start a prairie fire Science Bulletin2018,63:1314-1316
https://doi.org/10.1016/j.scib.2018.09.012
[10] Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet
Frontiers in Bioscience, Landmark 2017,22:530-538
Hydrogen sulfide mediates ion fluxes inducing stomatai closure in response to drought stress in Arabidopsis thaliana
Plant and Soil2017,419(1-2):141-152 https://doi.org/10.1007/s 111 04-017-3335-5
[11] Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana
Plant Sci. 2017,256:148-159.
https://doi.oig/10.1016/j.plantsci.2016.12.011
[12] Characterization of the Heme Pocket Structure and Ligand Binding Kinetics ofNon-symbiotic Hemoglobins from the Model Legume Lotus japonicus
Front. Plant Sci. 2017,00407 https://doi.oig/10.3389/fpls.2017.00407
[13] The Ca2+/calmodulin2-bindingtranscription factorTGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis
The Plant Journal 2017,91(6):1038-1050
https://doi.org/10.1111/tpj. 13627
[14] Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants
Nitric Oxide 2016,61:10-19 https://doi.org/10.1016/j.niox.2016.09.010
[15] Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit Planta 2016,244( 1):181-190
https://doi.org/10.1007/s00425-016-2501 -y
[16] Specificity of Polyamine Effects on NaCl-induced Ion Flux Kinetics and Salt Stress Amelioration in Plants
Plant and Cell Physiology 2010,51 (3): 422-434
https://doi.oig/1 ().1093/pcp/pcq007
參考文獻:用于模線粒體氧化應激和呼吸研究
[1 ] Interplay ofNitric Oxide Synthase (NOS) and SrrAB in Modulation of Staphylococcus aureus Metabolism and Virulence Infect Immun. 2019,87(2)x00570-18.
https://doi.org/10.1128/1A1.00570-18
[2] 3-Mercaptopyruvate sulfurtransferase disruption in dermal fibroblasts facilitates adipogenic trans-diflerentiation Experimental Cell Research 2019,385(2): 111683
https://doi.oig/10.1016/j.yexcr2019.111683
[3] Cleistanthus collinus poisoning affects mitochondrial respiration and induces oxidative stress in the rat kidney Toxicol Meeh Methods. 2019,29(8):561-568
https://doi.oig/10.1080/15376516.2019.1624905
[4] Acceleration of the autoxidation of nitric oxide by proteins
Nitric Oxide 2019,85(1):28-34
https://doi.oig/ 10.10I6/j.niox.2019.01.014
[5] Hypoxia perturbs endothelium by re-organizing cellular actin architecture: Nitric oxide offers limited protection
Tissue and Cell 2018,50:114-124
https://doi.org/10.1016/j.tice.2017.12.007
[6] Carbonic anhydrase II does not exhibit Nitrite reductase or Nitrous Anhydrase Activity
Free Radical Biology and Medicine 2018,117:1-5
https://doi.oig/10.1016/j .freeradbiomed.2018.01.015
[7] Altered cellular redox homeostasis and redox responses under standard oxygen cell culture conditions versus physioxia
Free Radical Biology and Medicine 2018,126:322-333 https://doi.org/10.1016/j.freeradbiomed.2018.08.025
[8] Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner BrJ Pharmacol. 2018,175(8): 1126-1145.
https://doi.org/10J 11 l/bph. 13861
[9] Nitric oxide as an all-rounder for enhanced photodynamic therapy: Hypoxia relief, glutathione depletion and reactive nitrogen species generation
Biomaterials 2018, 187:55-65
https://doi.org/10.1016/j.biomaterials.2018.09.043
[10] Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner
Oxidative Medicine and Cellular Longevity 2018,2018,9396089,17 pages
https://doi.oig/10.1155/2018/9396089
[11] Inhibition of Mitochondrial Bioenergetics by Esterase-Triggered COS/H2S Donors
ACS Chem. Biol. 2017,12(8):2117-2123 ' https://doi.org/l0.1021/acschembio.7b00279
[12] Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia
lntJ.Mol.Sci.2017,18(9), 1897;
https://doi.org/10.3390/ijms 18091897
[13] Resolution of mitochondrial oxidant stress improves aged-cardiovascular performance
Coron Artery Dis. 2017,28(1): 33T3. https://doi.oig/10.1097/MCA.0000000000000434
[14] Expression of multiple cbb3 cytochrome coxidase isofbrms by combinations of multiple isosubunits in Pseudomonas aeruginosa PNAS 2016,113(45):12815-12819
https://doi.org/10.1073/pnas. 1613308113
[15] The Tenninal Oxidase Cytochrome bdPromotes Sulfide-resistant Bacterial Respiration and Growth
Scientific Reports 2016,6:23788 https://doi.org/10.1038/srep23788
[16] S1RT3 Mediates the Antioxidant Effect of Hydrogen Sulfide in Endothelial Cells
Antioxidants & Redox Signaling 2016,24(6): 329-343
https://doi.org/10.1089/ars.2015.6331
[17] The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic fiinction in a rat model of alcohol-induced fatty liver disease
Redox Biology 2016,9:188-197
https://doi.oig/10.1016/j.redox.2016.08.005
[18] Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt
Oxidative Medicine and Cellular Longevity 2015,2015:754670.11 pages http://dx.doi.oig/10.1155/2015/754670
[19] Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption
Redox Biology 2014,2:667-672
https://doi.org/ 10.1016/j .redox.2014.04.010
[20] Nucleoside monophosphorothioates as the new hydrogen sulfide precursors with unique properties
Phannacological Research 2014,81:34-43 https://doi.org/ 10.1016/j .phrs.2014.01.003
[21 ] Chapter Twelve - Measurement of ROS Homeostasis in Isolated Mitochondria
Methods in Enzymology 2014, 547:199-223 https://doi.oig/10.1016/B978-0-12-80I415-8.00012-6
[22] Oxygen dependence of nitric oxide-mediated signaling
Redox Biology 2013,1(1):203-209
https://doi.org/10.1016/j.redox.2012.11.002
[23] Sex-dependent changes in the pulmonary vasoconstriction potential of newborn rats following short-term oxygen exposure Pediatric Research 2012,72:468X78
https://doi.oig/10.1038/pr.2012.120
[24] Differential sensitivity to LPS-induced myocardial dysfunction in the isolated Brown Norway and Dahl S rat hearts: roles of mit -ochondrial function, NFKB activation and TNF-a production
Shock. 2012,373:325—332.
https://doi.oig/10.1097/SHK.0b013e31823fl46f
[25] Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Im -plications for phototherapy
Journal of Photochemistry and Photobiology B: Biology 2011,102(3): 182-191
https://doi.oig/10.1016/j.jphotobiol.2010.12.002